Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Journal of Water Chemistry and Technology ; 45(2):181-194, 2023.
Article in English | ProQuest Central | ID: covidwho-2303517

ABSTRACT

The present research deals with the Risk assessment of groundwater quality. 79 groundwater samples were collected from domestic and agricultural usage open and bore wells during January 2021(COVID-19 Pandemic Period). Groundwater samples were tested to determine the physicochemical parameters using standard testing procedure for the preparation of spatial distribution maps of each parameter based on the World Health Organization (WHO) standard. Multivariate statistical analysis has shown the source of groundwater pollution from secondary leaching of chemical weathering of rocks. From the Water Quality Index and bivariate plot reveals that less than 20% of the area comes under high and very high-risk zone. The types of hardness diagram showed 32.91% of the samples fall in hard brackish water as illustrated by the Piper trilinear diagram. The research outcome result shows that the least percentage of industrials effluents due to the COVID-19 pandemic, not working for all industries during lock down period.

2.
Sci Total Environ ; 867: 161609, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2242699

ABSTRACT

The outbreak of the COVID-19 has resulted in a great increase in the use of H2O2 disinfectant, which is listed as one of the commonly used disinfectants for COVID-19 by the U.S. Environmental Protection Agency. However, excessive use of H2O2 disinfectant can threaten human health and damage the water environment. Therefore, it's of great importance to detect H2O2 in aquatic environments and biological systems. Herein, we proposed a novel ESIPT ratio fluorescent probe (named probe 1) for detecting H2O2 in water environment and biosystems. Probe 1 emits blue fluorescence as the introduction of the phenylboronic acid disrupts the ESIPT process. After reacting with H2O2, the phenylboronic acid is oxidatively removed, and the ESIPT process is restored, which makes the fluorescence emission wavelength red-shifted. Probe 1 exhibited a short response time, high sensitivity, and a large Stokes shift to H2O2. Importantly, it has been successfully used to detect H2O2 not only in actual water samples, but also endogenous and exogenous H2O2 in living cells. The characteristics of probe 1 have a wide range of applications in environmental and biological systems.


Subject(s)
COVID-19 , Fluorescent Dyes , Humans , HeLa Cells , Hydrogen Peroxide , Water
3.
Journal of Hydrology ; 61(1):1-3, 2022.
Article in English | ProQuest Central | ID: covidwho-1970954

ABSTRACT

There are a range of spatial scales addressed in the papers, from the individual building scale to the cargo ship (Coxon et al., 'Exploring opportunities for sewage testing on cargo ships as a tool to screen seafarers for COVID-19'), subcatchment to sewershed (Nicoll et al., 'Neighbourhood-scale wastewater-based epidemiology for COVID-19'), and city to national (Gilpin et al., A pilot study of wastewater monitoring for SARS-CoV-2 in New Zealand' and Trowsdale et al., 'Establishing New Zealand's national pathogen surveillance system using wastewater-based epidemiology');and all the papers make use of the international literature to provide context for what is a global pandemic. Marrying such information with environmental water samples collected on a daily or weekly basis is problematic. Repurposing data also raises important ethical questions of ownership, confidentiality and responsibility that need to be asked to ensure what we scientists do is both good and right (Price and Trowsdale, 'The ethics of wastewater surveillance for public health').

4.
Water ; 14(10):1560, 2022.
Article in English | ProQuest Central | ID: covidwho-1870966

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) were investigated in five wastewater treatment plants (WWTPs), groundwater, irrigated soils, and plants in Amman and Al-Balqa governorates in Jordan. PPCPs were extracted from water samples by solid-phase extraction (SPE) and analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS). Carbamazepine, ciprofloxacin, ceftiofur, diclofenac, erythromycin, lincomycin, ofloxacin, pyrimthamine, spiramycin, sulfamethoxazole, sulfapyridine, testosterone, trimethoprim, and thiamphenicol were detected in all raw wastewaters in μg/L, whereas 45 PPCPs were below the detection limits (<0.02 μg/L) in all samples. Na`ur and Abu Nuseir WWTPs showed high PPCPs removal efficiencies in comparison with AL-Baqa`a, Salt, and Fuhais-Mahis WWTPs. Boqorreya spring showed signs of contamination by Salt WWTP effluents as a result of mixing. Irrigation with effluents showed higher carbamazepine concentrations in soils at the top soil layers (0 to 20 cm) in all farms than its concentrations at the root zone (20 to 40 cm) by using drip irrigation system with various plants. In plants, carbamazepine concentration was only detected in high concentration level in mint leaves. In the same farm, diclofenac concentration was detected only in olives and not in twigs and leaves, indicating a high rate of plant uptake especially during the olive’s growth period. Furthermore, plant fruits, leaves, and stems left on the farm after harvesting are generally consumed by cattle, which means entering the food chain of humans.

5.
Sci Total Environ ; 839: 156164, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-1852052

ABSTRACT

The outbreak and spread of Corona Virus Disease 2019 (COVID-19) has led to a significant increase in the consumption of sodium hypochlorite (NaOCl) disinfectants. NaOCl hydrolyzes to produce hypochlorous acid (HOCl) to kill viruses, which is a relatively efficient chlorine-based disinfectant commonly used in public disinfection. While people enjoy the convenience of NaOCl disinfection, excessive and indiscriminate use of it will affect the water environment and threaten human health. Importantly, HOCl is an indispensable reactive oxygen species (ROS) in human body. Whether its concentration is normal or not is closely related to human health. Excessive production of HOCl in the body contributes to some inflammatory diseases and even cancer. Also, we noticed that the concentration of ROS in cancer cells is about 10 times higher than that in normal cells. Herein, we developed a HOCl-activatable biotinylated dual-function fluorescent probe BTH. For this probe, we introduced biotin on the naphthalimide fluorophore, which increased the water solubility and enabled the probe to aggregate in cancer cells by targeting specific receptor overexpressed on the surface of cancer cell membrane. After reacting to HOCl, the p-aminophenylether moiety of this probe was oxidatively removed and the fluorescence of the probe was recovered. As expected, in the PBS solution with pH of 7.4, BTH could give full play to the performance of detecting HOCl, and it has made achievements in detecting the concentration of HOCl in actual water samples. Besides that, BTH had effectively distinguished between cancer cells and normal cells through a dual-function discrimination strategy, which used biotin to enrich the probe in cancer cells and reacted with overexpressed HOCl in cancer cells. Importantly, this dual-function discrimination strategy could obtain the precision detection of cancer cells, thereby offering assistance for improving the accuracy of early cancer diagnosis.


Subject(s)
COVID-19 , Disinfectants , Biotin , Fluorescent Dyes , Humans , Hypochlorous Acid/metabolism , Water
6.
Water ; 14(4):588, 2022.
Article in English | ProQuest Central | ID: covidwho-1715843

ABSTRACT

The consumption of illicit drugs represents a global social and economic problem. Using suitable analytical methods, monitoring, and detection of different illegal drugs residues and their metabolites in wastewater samples can help combat this problem. Our article defines a method to develop, validate, and practically applicate a rapid and robust analytical process for the evaluation of six naturally occurring cannabinoids (CBG, CBD, CBDV, CBN, THC, THCV), two cannabinoids in acidic form (CBDA, THCA-A), and the major cannabis-related human metabolite (THC-COOH). After SPE offline enrichment, we used a UPLC–ESI-MS/MS system, which permitted the determination of several by-products. Studied matrices were samples of different origins: (i) effluent water from a wastewater treatment plant in the Porto urban area;(ii) environmental water from Febros River, the last left-bank tributary of the Douro River. The multi-residue approach was substantiated and successfully employed to analyze the water samples collected in the above locations. The rapid and precise quantification of nine different cannabinoids in different water samples occurred within nine minutes at the ng L−1 level. The appearance of dozens of ng L−1 of some cannabis secondary metabolites, such as CBD, CBDA, CBN, THCA-A, indicates this plant species’ widespread usage among the general population in the considered area.

7.
Environ Sci Technol ; 56(2): 862-873, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1599640

ABSTRACT

Since the COVID-19 pandemic is expected to become endemic, quantification of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in ambient waters is critical for environmental surveillance and for early detection of outbreaks. Herein, we report the development of a membrane-based in-gel loop-mediated isothermal amplification (mgLAMP) system that is designed for the rapid point-of-use quantification of SARS-CoV-2 particles in environmental waters. The mgLAMP system integrates the viral concentration, in-assay viral lysis, and on-membrane hydrogel-based RT-LAMP quantification using enhanced fluorescence detection with a target-specific probe. With a sample-to-result time of less than 1 h, mgLAMP successfully detected SARS-CoV-2 below 0.96 copies/mL in Milli-Q water. In surface water, the lowest detected SARS-CoV-2 concentration was 93 copies/mL for mgLAMP, while the reverse transcription quantitative polymerase chain reaction (RT-qPCR) with optimal pretreatment was inhibited at 930 copies/mL. A 3D-printed portable device is designed to integrate heated incubation and fluorescence illumination for the simultaneous analysis of nine mgLAMP assays. Smartphone-based imaging and machine learning-based image processing are used for the interpretation of results. In this report, we demonstrate that mgLAMP is a promising method for large-scale environmental surveillance of SARS-CoV-2 without the need for specialized equipment, highly trained personnel, and labor-intensive procedures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pandemics , RNA, Viral , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL